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Abstract
A direct numerical solution of the steady-state Boltzmann equation in a
cylindrical geometry is reported. Finite-size effects are investigated in
large semiconducting nanowires using the relaxation-time approximation. A
nanowire is modelled as a combination of an interior with local transport
parameters identical to those in the bulk, and a finite surface region across
whose width the carrier density decays radially to zero. The roughness of the
surface is incorporated by using lower relaxation times there than in the interior.

An argument supported by our numerical results challenges a commonly
used zero-width parametrization of the surface layer (Chambers 1950 Proc. R.
Soc. A 202 378). In the non-degenerate limit, appropriate for moderately doped
semiconductors, a finite surface width model does produce a positive
longitudinal magneto-conductance, in agreement with existing theory of
Chambers. However, the effect is seen to be quite small (a few per cent) for
realistic values of the wire parameters even at the highest practical magnetic
fields. Physical insights emerging from the results are discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The effect of a finite system size on the conductivity of a material is a subject of considerable
physical interest, which has recently been lent added relevance and importance by rapid
developments in nanowire synthesis and assembly [2–10], electrical characterization and
transport measurement methods [5, 11–22]. The development of nanowires currently
represents an important part of materials and applied physics research. Hierarchial self-
assembly techniques [13] envisaged in semiconductor nanowires make them promising central
elements of future integrated electronics.
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Reports of basic functional two- and three-terminal semiconductor nanowire devices
including junctions, bipolar transistors and field-effect transistors are now widely found in the
literature. The nanoscale transport properties of several important semiconductors including
Si [15, 16, 12, 5], GaAs [20], GaN [19] and Ge [23–25], and semi-metals [26–33] have been
investigated in detail. (Bi has attracted great attention because of its unique combination of
interesting properties and its potential for thermoelectric applications [28–35].) Bicrystalline
nanowires [9], crossed nanowire structures [12], functional networks [13, 21, 17] including
ultra-high-density lattices [17], heterostructures [36] and superlattice devices [20] are part of
the rapidly growing body of novel nanowire configurations under development.

A central aspect of theoretical enquiry must be the extent to which the conductivity of a
nanowire differs from that of the bulk material. At first glance, it seems reasonable to suppose
that the conductivity is smaller in a nanowire because of the addition of surface scattering,
assuming that the band structure does not change drastically. However, experimental results
have yielded conflicting indications on this point, which is presently not well understood.
Particularly intriguing are reports of mobility values higher than their bulk counterparts
observed in silicon nanowires [18], while in other cases the mobility has been deduced to
be orders of magnitude lower.

Such challenging theoretical questions, brought into immediate relevance by the extensive
data on electrical transport in nanowires compiled in the last few years, make a thorough quan-
titative investigation valuable at this point. The widespread pursuit of experiments pertinent to
the surface effect on conductivity motivates a generic numerical description of the finite-size
effect allowing both freedom and simplicity in the incorporation of nanowire characteristics.

For large- and moderate-sized nanowires operated at room temperature, semi-classical
kinetic effects are expected to be as important as quantum mechanical effects like the
modification of band structure. Thus a semi-classical study is both necessary and desirable
in the common regime where the diameter of the nanowires is much larger than the thermal
wavelength. While a quantum mechanical approach is indispensable to investigate conductance
in very narrow nanowires (radii of a few nanometres) [37, 38], it is neither viable nor suitable
for larger nanowires with radii of the order of 100 nm. For the latter the use of the semi-classical
Boltzmann equation is the appropriate method to approach a thorough quantitative study of
finite-size effects.

These effects have previously been addressed theoretically only with simplistic
assumptions regarding the surface. The analytical results most widely quoted are due to
Chambers [1], who used kinetic-theoretical ideas to calculate the modification of the effective
mean free path due to the presence of a surface and then used this value to find the conductivity.
Essentially the same results were obtained using the Boltzmann equation with suitable
boundary conditions in [39].

We present here the results obtained from a general numerical scheme we have developed
to solve the Boltzmann equation in a cylindrical geometry. Such a direct numerical solution
offers the requisite freedom in incorporating nanowire characteristics and conditions such
as the equilibrium electron density profile, or the presence of defects and impurities. To
retain conceptual simplicity, we employ the relaxation-time approximation as a first step
towards the systematic modelling and prediction of nanowire conductivity with a view to
relating model parameters to experimental data, and possibly casting a light on surface
characterization [6, 40]. In this context, comprehensive experimental studies of Bi nanowires
are of direct relevance [28, 31–33]. The introduction of diameter-controlled synthesis of
nanowires [8, 6] provides yet another fruitful context for our study.

We emphasize that surface scattering is just one of many scattering mechanisms that
contribute to the resistivity of a nanowire; other mechanisms, especially acoustic phonon
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scattering, can be produce more dissipation in many circumstances. In addition, for
studies of specific nanowires with specific surface defects and impurities, the relaxation time
approximation employed here would ideally be replaced by a more exact approach such as
Monte Carlo or quantum mechanical simulation as mentioned above. Our intention, however,
is to contribute generic intuition about the behaviour of surface scattering in large wires, even
when the specific surface scattering centres are unknown and even when other resistive effects
may be primary. For this reason, we use a generic relaxation time approach and map out
its predictions for varied choices of wire characteristics. Despite its approximate character,
this approach confers useful insight and is substantially more refined than the often-invoked
‘specularity coefficient’ model [1, 39].

Inter alia, the results yield insights into the general problem of transport with a nominal
relaxation time that varies with spatial coordinates, which is non-trivial because of the
fact that the diffusion of carriers connects different spatial regions, making their properties
interdependent, and thereby introduces a connectivity to the physical situation. This may be
of direct relevance to transport in layered media such as magnetic multilayers [41–44].

The numerical problem resulting from a finite-difference representation of the Boltzmann
equation with a simple grid is solved using the conjugate-gradient method, which offers
significant computational efficiency. A comparison with analytical results in limiting cases
confirms the reliability of the scheme.

The paper is organized as follows. In section 2 we describe our computational framework,
and the form of the Boltzmann equation adapted to the problem at hand. Our surface model
is described in section 3. We present our results in the simple case of zero magnetic field in
section 4, showing how they conform to physical expectation, thus validating the numerical
scheme used. The important limit of zero-width surface is considered in section 5. Section 6
is devoted to the longitudinal magneto-conductance arising due to the surface effect and is
followed by a summary (section 7).

2. Boltzmann equation and problem specification

In our approach, we consider a cylindrical conductor which has a finite surface width, so
that there is no abrupt change at the boundary to be dealt with through boundary conditions.
In particular, this includes treating the unperturbed (i.e. when the external fields are zero)
distribution function f0 as a function of both space and momenta. In order to use the Boltzmann
equation with such a distribution function f0 we introduce an effective internal electric field
Ec(r) in addition to any external field, to account for this spatial variation of f0. In a confined
cylindrical system where f0 decays from its interior magnitude to zero over a finite surface
width, the force due to this internal field is exactly analogous to the constraining force that keeps
a particle within an enclosure with an abrupt boundary, and is therefore physically expected.
With this additional internal field, the Boltzmann equation [45] for the distribution f (p, r) of
non-interacting carriers in the relaxation time approximation with a spatially varying relaxation
time is

∇ f · p
m

+ ∇P f · q

(
E + Ec +

p
m

× B
)

= − f − f0

τ (r)
. (1)

Here E and B are the external electric field and magnetic field, and q and m are the charge and
mass of each carrier. It is convenient to introduce the deviation φ(p, r) = f (p, r) − f0(p, r)
due to the presence of the external fields; the equation for φ is

φ = −τ (r)
[
∇φ · p

m
+ q∇Pφ ·

(
E + EC +

p
m

× B
)

+ q∇P f0 ·
(

E +
p
m

× B
)]

. (2)
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Figure 1. Model geometry.

We consider a long cylinder with no azimuthal or axial inhomogeneity and confine attention
to the case where the external fields are uniform and parallel to the axis of the wire, defining
a natural axis ẑ of reference: E = Eẑ; B = Bẑ (see figure 1).

Thus the physical problem at hand requires only one spatial degree of freedom r =√
x2 + y2, although we have to treat all the momentum components. It is convenient to work

with the local momentum components pr = p · r̂ and pθ = p · θ̂ rather than the canonical
momenta in a cylindrical system, because the canonical momentum conjugate to θ is an angular
momentum. Also, to preserve form (2) of the Boltzmann equation, f , f0 and φ are defined as
coordinate densities in the space of (pr , pθ , pz, r) so that f d pr d pθ d pz dr is the number of
carriers in a volume element of this space. The missing volume element factor 2πr is absorbed
into f , changing the internal field Ec, as we shall see. We solve equation (2) by discretizing
on a real space grid of about 204 grid points. The resulting matrix equation is solved by the
method of conjugate gradients.

The drift velocity, which is the population average of the component of the carrier velocity
parallel to the external electric field, is

〈vz〉 = 〈pz〉
m

= 1

m

∫
d3 p dr f (p, r)pz∫
d3 p dr f (p, r)

= 1

m

∫
d3 p dr φ(p, r)pz∫
d3 p dr f0(p, r)

. (3)

The effective conductivity σ is q〈vz〉N/ lπr2, where N is the total number of carriers in the
wire, l is its length and πr2 its cross-sectional area.

An explicit expression for Ec can be directly deduced from the spatial variation of f0 for
an arbitrary form of the latter, since by definition of the unperturbed distribution,

∇ f0 · p
m

+ ∇P f0 · qEc = 0. (4)

For simplicity, we assume that the spatial dependence of the distribution function is completely
separable from the momentum dependence so that f0 = F(p)ξ(r) and the internal field EC

points only in the direction of r : EC = EC(r)r̂ . The computational results described below
pertain to the case where the momentum-distribution is Maxwellian:

F(p) = exp

(
− p2

2mkT

)
. (5)

Inserting f0 = F(p)ξ(r) and (5) in (4) we see that the simplest consistent form of the internal
field is

Ec(r) = kT

q

1

ξ(r)

dξ

dr
. (6)
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Figure 2. Radial profile of the relaxation time τ (r).

3. Surface model

We use a simple, continuous model to include the effects of the surface on the conductivity.
The fact that there are no carriers beyond the wire radius is accounted for by taking the volume
density of carriers to decay spatially as a Gaussian with a width w beyond a certain radius r0. A
Gaussian function is chosen because of its mathematical simplicity and because its qualitative
form is physically reasonable—we anticipate qualitatively valid physical conclusions using
this form. The inhomogeneous carrier density results from a constraining electric field that
is proportional to the difference r − r0 for r > r0 and is directed towards the wire axis. An
additional term proportional to 1/r in the effective internal field Ec arises on using equation (6)
due to the inclusion of the volume factor 2πr in the definition of f , as mentioned in section 2.

f0 = F(p)ξ(r) =




r exp

(
− p2

2mkT

)
r < r0

r exp

(
− (r − r0)

2

2w2

)
exp

(
− p2

2mkT

)
r � r0

(7)

Ec(r) = kT

qr0
h(r) =




kT

qr
r < r0

−kT (r − r0)

qw2
+

kT

qr
r � r0.

(8)

We take w to be of the order of 0.1× R and consider the effect of varying its value in section 5.
The relative roughness of the surface is described by lower relaxation times τ (r) past a

radius R. The key property of the surface that we seek to capture is that the material there has
a substantially lower collision time than the bulk. We also want the τ (r) to vary smoothly.
Further, it is reasonable that the change of character is monotonic in radial values. We choose
a Gaussian decay form with a width wr

τ (r) = τ0χ(r) =



τ0 r < R

τ0 exp

(
− (r − R)2

2w2
r

)
r � R

(9)

because it is a simple single expression with these three properties. The radial profile of the
relaxation time is shown in figure 2. It is not essential a priori that ξ(r) in equation (7) and τ (r)

necessarily be assigned the same analytical form: this is merely an assumption of convenience,
given the similar qualitative criteria that they satisfy. Further, the widths characterizing the
two decays, wr and w, are a pair of independent parameters, as are the radial values R and r0
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marking the onset of the respective decays. Thus, in principle, a study using our model would
have to include the complete variation of two (dimensionless) variables,

A = log

(
wr

w

)
and D = (R − r0)

wr
. (10)

It turns out that this does not significantly add to the physical information derived from the
simplest case where the radii satisfy R = r0 and also the widths w = wr (i.e. A = D = 0).
We therefore focus on this simplest case and indicate where appropriate the consequences of
making A and D non-zero.

4. Conductivity

In the absence of a magnetic field, it is possible to make certain predictions analytically about
the behaviour of the conductivity. We work in the limit where E is small, so that the drift
velocity 〈vz〉 is always small in comparison to the thermal mean velocity vth. If τ (r) were a
constant, τ0, the drift velocity would be given by the familiar result

〈vz〉 = q Eτ0

m
. (11)

When τ acquires a non-trivial radial profile τ (r), its overall scale determines to what extent thin
cylindrical layers at different radii affect their neighbours because of the diffusion of carriers
from layer to layer. If this scale is so small that the mean free path of particles with velocities
of the order of vth is much smaller than the length scale ζ over which τ changes significantly
(i.e. τ (r)vth � ζ = w), the spatial connectivity is negligible, and one may treat the different
layers separately. In this case, one can define an effective relaxation time τgeom which depends
only on the geometrical distribution of the relaxation time weighted by the relative carrier
concentration ξ(r) from equation (7).

τgeom =
∫

dr ξ(r)τ (r)∫
dr ξ(r)

. (12)

The use here of ξ(r), which is the spatial factor in the unperturbed distribution function f0,
is consistent with the fact that the relaxation timescale is small. For the model discussed in
section 3, this can be expressed simply in terms of the ratio ω = w/R, providing a useful test
for the numerical scheme in the limit of small τ0.

τgeom = τ0
1 +

√
πω + ω2

1 +
√

2πω + 2ω2
. (13)

It is therefore useful to consider the essential surface effect as the departure of the actual drift
velocity for the nanowire as a whole from the value derived by inserting τgeom in place of τ0

in (10). This, as we have just observed, will be perceptible only when τ0vth is comparable to
the surface width, and significant only when comparable to the wire radius.

We can study the physical consequences of independently varying the surface widths and
radii so that the A and D, given by equation (10), are non-zero. For large positive A, the
relaxation time varies gradually across the wire so that the drift velocity saturates towards the
geometric value qτgeom E/m regardless of D. This is expected because a slow variation of
τ (r) makes the effect of the inhomogeneity insignificant. If, further, D itself is non-negative
this geometric value approaches the bulk value. As A decreases, so that wr becomes a smaller
factor of w, finally down to small fractions of it, the drift velocity departs more and more from
the geometric value.
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Figure 3. Relative conductivity as a function of the relaxation timescale τ0 for different
temperatures. σ0 is the bulk value of the conductivity corresponding to a constant relaxation
time τ0. The inset shows the data collapse resulting upon scaling τ0 by a factor

√
T/T0. The fixed

parameters are E = 26 kV m−1, R = 200 nm and w = 40 nm.

As D � 1 the drift velocity saturates at the bulk value regardless of A because hardly
any carrier population exists beyond the point where the relaxation time begins to fall. As D
decreases from positive to negative values, the drift velocity departs more and more from the
geometric estimate. This is because the slope in the profile of τ (r) moves towards regions of
higher population, thus affecting more carriers. A systematic variation of A and D on a grid
of values yields numerical results that confirm the above conclusions. Significantly, the actual
drift velocity is always lower than the geometric estimate.

It is important to note that the effect of spatially varying τ in a conductor as a whole
is asymmetric in its action, between smooth (high τ ) and rough (low τ ) regions. A rough
region is much less affected by the gradient of τ (r) in its neighbourhood than a smooth region.
This is precisely because spatial connectivity is enhanced where τ (r)vth is large, as explained
previously. Thus, in a conductor which has both regions of high τ and low τ , the latter
separately exhibit geometric (unconnected) behaviour, showing no effect of the presence of
the former.

But the effect of spatial variation on regions with high τ is to decrease mobility there, since
carriers there can move enough to sample a significantly rougher region. Therefore, the effect
of spatial variation on rough regions being negligible, its effect on a conductor as a whole, too,
is a decrease in mobility. This consideration will later appear prominently in explaining the
magneto-conductive effect as well (section 6). Figure 3 shows the variation of the conductivity
as a function of the relaxation timescale for different temperatures. The ratio of the surface
width to the wire radius ω is fixed at 0.2. As τ0 → 0, the conductivity tends to the same
fraction of the bulk value at all temperatures, which is seen to be almost exactly equal to the
geometric factor 0.8815, the value obtained by putting ω = 0.2 in equation (12). At higher
temperatures, the departure from this ratio is also higher. This is physically expected since
a higher temperature makes available higher radial velocities to the carriers in their random
motion between collisions, thus increasing the communication between different layers. Thus
we see that even if the relaxation time were independent of the temperature, the conductivity
would have a temperature dependence in the low field limit because of the surface effect. Note
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that to isolate the surface effect, the complex temperature variation of relaxation time in a
real medium is deliberately suppressed, though it can be included easily in the computational
scheme.

Further, it is seen in the inset that the data can be collapsed onto a single curve by using
the transformation τ0 → τ0

√
T/T0, where T0 is an arbitrary temperature. In other words,

when B = 0 the temperature is a reducible parameter in the limit of a low electric field, which
can be accounted for exactly by rescaling τ in proportion to the corresponding mean thermal
velocity. This can be seen analytically by direct use of the Boltzmann equation, through a
transformation to dimensionless variables. Rewriting equation (2) with the functional forms
in (7)–(9) we have

φ + q Eτ (r)
∂φ

∂pz
+

kT

R
h(r)τ (r)

∂φ

∂pr
+ τ (r)

pr

m

∂φ

∂r
= q Eτ (r)pz

mkT
e−p2/2mkT ξ(r). (14)

Now introducing the variables u = p/
√

mkT and s = r/R, we get

φ +
q Eτ0√

mkT
χ(s)

∂φ

∂uz
+ h(s)

τ0

R

√
kT

m
χ(s)

∂φ

∂ur
+ χ(s)ur

τ0

R

√
kT

m

∂φ

∂s

= q Eτ0χ(s)ξ(s)uz√
mkT

e−u2/2. (15)

When E is small, φ is of the same order of smallness, and therefore the second term in the
left-hand side of (14) is negligible. This leaves us with a linear differential operator containing
τ0 only in the combination τ0

√
T acting on φ in the left-hand side. The appearance of τ0 and

T in the right-hand side (inhomogeneous term) of course merely alters the overall scale of φ.
Hence the function φ(u, r) may be written as q Eτ0√

mkT
× H (u, s; τ0

√
T ), where H is the solution

of (14) with the constant q Eτ0√
mkT

absent in the right-hand side. The drift velocity is

〈vz〉 =
√

kT

m

∫
d3u

∫
ds uzφ(u, s)∫

d3u
∫

ds ξ(s)e−u2/2

= Eqτ0

m

∫
d3u

∫
ds uz H (u, s; τ0

√
T )∫

d3u
∫

ds ξ(s)e−u2/2

= 〈vz〉0

∫
d3u

∫
ds uz H (u, s; τ0

√
T )∫

d3u
∫

ds ξ(s)e−u2/2
.

Thus 〈vz〉/〈vz〉0 (=σ/σ0) depends on τ0 only through the product τ0

√
T .

Figure 4 shows the variation of the conductivity as a fraction of the corresponding bulk
value with wire radius, parametrized by τ0. As τ0 decreases, the results approach geometrically
determinable values; further, as ω increases, not only does the geometrical factor move further
below 1 but also the actual conductivity departs more and more from the geometrical value.
Expectably, if the width is fixed, increasing the wire radius diminishes the strength of the
surface effect.

The conformity with physical expectation and analytically known limits in the results
above indicates the reliability of the numerical scheme and its suitability for other calculations
based on the Boltzmann equation.

5. Limit of zero surface width

A simple parametrization of the surface in a zero-width surface model is provided by the
‘specularity coefficient’ ε, which is the non-zero probability of carriers incident on the surface
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Figure 4. Relative conductivity as a function of wire radius. Here E = 26 kV m−1, T = 300 K
and w = 20 nm.
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Figure 5. Variation of conductivity with surface width for different relaxation timescales. The
geometric factor is included for reference. Here E = 26 kV m−1, T = 300 K and R = 200 nm.

suffering a scattering event there: they undergo diffuse rather than specular reflection [46].
This is often encountered in the literature; for instance, it has also been used in the analogous
context of thermal transport by phonons [47–50]. We now consider the physically important
limit of w → 0 which should relate the parameters in our model to the parameter ε. Figure 5
shows the numerical results obtained by varying the surface width parameter, along with the
graph of the analytical geometric factor. Significantly, it is seen that even for large τ0, the
departure from the bulk value seems to go down to a small number, possibly zero. This is
in contrast to [1] where the magnitude of the surface effect is unbounded as a function of
the relaxation timescale or mean free path. It may be noted that the computation becomes
increasingly more expensive, as the surface width is decreased; we believe that the lowest
width used here is low enough to allow us to draw qualitative conclusions from the results.

We thus see an apparent contradiction between the results obtained with two different
characterizations of the surface, which demands closer scrutiny. A direct contradiction results
only if ε in the abrupt surface model is considered a free parameter assignable arbitrary values
between 0 and 1; one could interpret the results we have seen as placing an upper limit on ε

not far above zero. But this, on the other hand, would imply that such a parametrization is not
very meaningful. Indeed, a value of ε = 1 is assumed in [1].
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The contrast between the two approaches becomes understandable when one recognizes
the correlation between ε and the fraction of carriers resident within the surface layer. In a
finite-width model, this fraction is always finite; it approaches zero only in the zero-width
limit, when ε → 0. Equivalently, a non-zero value of ε is only compatible with the existence
of a finite fraction of carriers on the surface. Thus if a finite-width model is accepted as more
realistic, a value of ε close to 1 is physically possible only when a large part of the total number
of carriers resides on the surface even in the absence of a field.

There is another way of pointing out the essential difference between an abrupt surface
model and a finite-width one. In the former, it is assumed that a scattering at the surface
necessarily returns the carrier into the bulk of the surface, whereas this is not the case in the
latter, once again bringing to mind the existence of a finite surface population. Finally, in the
former, there is no scale of the relaxation time at which the surface effect saturates, whereas,
in the finite-width model, saturation occurs where the mean free path exceeds a few times the
length scale ζ . Saturation is physically expected in the latter case—if, in some cases, typical
carriers can sample regions with significantly different values of τ during a lifetime, any further
increase of the lifetime should not make a big difference.

A future investigation of the surface effect resulting from a carrier distribution involving
non-trivial features near the surface rather than the simple, monotonic decay studied here is
expected to provide further insight. In particular, it may provide an explanation for the apparent
experimental evidence [51] that ε is close to 1. In any case, the considerations stated in this
section challenge the conception of the abrupt surface model, which ought to be reevaluated
in the light of these numerical results.

6. Longitudinal magneto-conductance

The effect of a longitudinal magnetic field (B) on the conductivity of a large nanowire is of
particular interest because the surface provides a classical kinetic mechanism for a magneto-
resistive effect. In the large-field limit, one would expect the magnetic field to decouple
different spatial regions by confining the carriers kinematically, constraining them to helical
motion between collisions. Thus, when the cyclotron radius is smaller than ζ , the carriers are
effectively localized by the magnetic field, so that the conductivity is largely determined by
the geometric factor. As we have seen in section 4, the effect of spatial connectivity in a wire
with a rough surface is to lower the conductivity below the geometric factor. Since a large
B field ought to reduce connectivity, the magneto-conductance clearly ought to be positive.
Further, this magneto-conductance is expected to saturate with B when the cyclotron radius for
carriers with typical momentum values (around the thermal momentum pth) becomes much
smaller than ζ . On the other hand, the magnetic field has an appreciable effect only when
the reciprocal of the cyclotron frequency for carriers with typical momenta is smaller than the
relaxation time; the magnetic field is ineffective if the probability for a collision before the
carrier velocity turns round once is high.

At intermediate values of B , it is not obvious whether there can be a case of negative
magneto-conductance; the field could conceivably tend to produce a net movement of carriers
in some regions down the gradient of τ (r). The results presented in figures 6 and 7 suggest
that this does not occur; the magneto-conductance is seen to be positive within the accuracy
of the calculation in all cases.

For relaxation times corresponding to the bulk mobility of a common semiconducting
material like Si, the effect of the magnetic field is surprisingly small. In particular, the saturation
values of B exceed realistic laboratory values, whereas the magnitude of the fractional magneto-
conductance is still only a few per cent. Again, this is in contrast to the results in [1]. Although
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Figure 6. Fractional longitudinal magneto-conductance as a function of relaxation timescale for
high magnetic fields. E = 26 kV m−1, T = 300 K, R = 200 nm and w = 40 nm.
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Figure 7. Variation of fractional magneto-conductance with B going up to very large values. The
fixed parameters used are the same as in figure 6.

it is to be noted that the latter pertain to the degenerate limit (metallic case), the crux of the
difference lies in the surface model, as argued in section 5. In short, if the surface effect is
small, the magneto-conductiveeffect must also be limited by the corresponding departure from
the geometric factor.

However, there still remains a qualitative similarity between our results and the results
in [1]; for instance, we see that the low B results lend themselves to a good parabolic fit,
which is consistent with [1]. Further, the arguments we have presented are substantiated by
the fact that [1] systematically predicts a greater surface effect than the experimental results
used for comparison, a discrepancy noted there itself. Since the discrepancy is despite the use
of best-fit values, the parametrization itself must be regarded as dubious. It is important
to note, however, that the results in [1] and our results are both consistent with recent
experimental findings [28, 29, 31] to the extent that this surface magneto-resistive effect can
be experimentally delineated from intrinsic quantum-mechanical effects.

The intriguing fact that the magnetic field increases conduction in all cases examined
prompts a second look at the general effect of a spatially varying relaxation time. For one thing,
using the same numerical scheme, we find another curious fact—the magneto-conductance
does not flip sign when the profile of τ (r) is inverted, i.e. with a thin region of high mobility
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surrounding a core of low mobility, even in the high B limit. More generally, we could not
find a profile of τ (r) such as to yield a negative magneto-conductance.

We attribute the absence of a negative magneto-conductance to the asymmetry between
smooth (high τ ) and rough (low τ ) regions in the effect of a spatial variation of τ , discussed in
section 4. As explained there, the surface effect, which is the result of connectivity in the model
at hand, tends to decrease the conductivity below the geometric value. Thus the introduction
of a magnetic field, whose basic action is to undo the transport connection between different
regions by confining carriers, in reversing the effect of connectivity, can only increase the
conductivity.

One also sees, by the same line of reasoning, that the surface effect must be small if τ (r) is
assumed to be continuous, since the region that contributes most to it is that where both τ and
its gradient are large; but this region is of the order of the surface width w, which is expected
to be small compared to the wire radius.

7. Conclusion

A direct solution of the Boltzmann transport equation offers a powerful approach to transport
calculations in large nanowires. We have presented a simple finite-width model in a cylindrical
geometry and shown that despite its simplicity, its scope is significantly greater than that of
an abrupt surface model, from which it exhibits qualitative differences. This challenges the
utility of an abrupt surface model, especially when parametrized by the specularity coefficient.
Our numerical results show that the classical magneto-conductive effect in large nanowires of
materials like Si is limited to a few per cent even with magnetic fields beyond the range of a
practical laboratory set-up.
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